2/2 068
CIRC ACCESSION NO--APO054632
ABSTRACT. A HATH. ANAL. IS GIVEN OF
2-FREQUENCY LASERS, BASED ON THE EXACT SOLN. OF THE PROBLEM OF THE
EFFECT OF THE RADIATION UPON THE STATE AND PROPERTIES OF A QUANTUM
EFFECT OF THE RADIATION. OF THE PROBLEM OF THE
SYSTEM (P. A. APANASEVICH, A. S. BANKOVSKII, 1967). TWO SCHEMES FOR
SYSTEM (P. A. APANASEVICH, A. S. BANKOVSKII, 1967). TWO SCHEMES FOR
APPROACHED THAT OF GASEOUS LASERS. THE CALCN. SHOWS THAT A QUANTUM
APPROACHED THAT OF GASEOUS LASERS. THE CALCN. SHOWS THAT A QUANTUM
PROCESS LEADS TO A NON LINEAR DEPENDENCE OF THE LASER D. ON THE PUMPING
D.

UNCLASSIFIED

UDC 621.315.592

- Jssr -

GRAMATSKIY, V. I., KARAMAN, M. I., MUSHINSKIY, V. P.

"Optical Absorption of Gallium Monotelluride"

Leningrad, Fizika i Tekhnika Poluprovodnikov, Vol 6, No 3, 1972, pp 550-552

Abstract: Results are presented from a detailed investigation of the absorption edge by measuring the transmission from which the width of the forbidden band (E), the binding energy of the excitons (G) and other parameters of GaTe are determined. The temperature dependence of the exciton band n=1 was also investigated. The absorption spectra of GaTe and the isoabsorption lines are presented. The plotted data show that the absorption coefficient in the long wave region of the edge of the band (n=1) is satisfactorily described by the exponential function

$$K = K_0 \exp \left[-\frac{\sigma(hv_0 - hv)}{kT} \right],$$

where K_0 and $h\nu_0$ are constants which are equal to $8.7\cdot10^9$ cm⁻¹ and 1.837 electron volts respectively, σ is a dimensionless parameter characterizing the slope of the straight line \lg K. The isoabsorption curves for various values 1/2

USSR

GRAMATSKIY, V. I., <u>Fizika i Tekhnika Poluprovodnikov</u>, Vol. 6, No 3, 1972, pp 550-552

of K from the long wave segment of the band indicate good convergence at the point $h\nu_0$. The parameter σ_0 is related to the exciton-phonon interaction constant g by the expression $\sigma_0 = 2g^{-1}/3$, from which the magnitude of the exciton-phonon coupling is 0.27. This indicates the weak nature of the exciton-phonon interaction in gallium telluride.

2/2

- 134 -

USSR

UDC: 621.315.592

KARAMAN, M.I. and MUCHINSKIY, V.P.

"Electroluminescence of Layered $GaS_{x}Se_{1-x}$ and $GaSe_{x}Te_{1-x}$ Crystals"

Leningrad, Fizika i Tekhnika Poluprovodnikov, Vol 4, No 4, 1970, pp 783-785

Abstract: An attempt is made in this communication to obtain preliminary information concerning the electroluminescent qualities of specially undoped crystals of GaSxSel-x and GaSexTel-x. For this purpose, large uniform crystals were obtained from which plates measuring 20 by 8 by 0.1 mm were split off. The electrodes were applied by sputtering in a vacuum of 10-5 mm Hg from Cu, Zn, In, Ag, and Au. The investigations were done in a cryostat at a temperature of 77° K for a constant electric field as well as in an electric field varying from 20 to $10^3~\mathrm{Hz}$. The radiation was focused by special condensers on the input slot of a ZMR monochromator with a glass prism. The output from the monochromator was recorded by photoelectric multipliers FEU-17 and FEU-22 with a detection system. A bright glow in the GaS_XSe_{1-x} crystals was detected at 10^2 to 10^3 volts per centimeter; the radiation spectra of these crystals are given. With a transition from GaSe to GaS, a smooth shift of the radiation curves toward the short wavelengths was observed. The position of electroluminescent exciton band maxima for crystals similar in composition to GaS is in good agreement with the photoluminescent data for these crystals.

1/1

- 38 --

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002201210020-1"

PROCESSING DATE--18SEP70

TITLE--ELECTROADSORPTION OF GALLIUM SELENIDE SINGLE CRYSTALS -U-

AUTHOR-(02)-KARAMAN. M. I. MUSHINSKIY, V.P.

COUNTRY OF INFO--USSR

023

SOURCE--FIZ. TEKH. POLUPROV. 1970, 4[2], 424-5

DATE PUBLISHED----70

SUBJECT AREAS -- PHYSICS, CHEMISTRY

TOPIC TAGS--SINGLE CRYSTAL, CHEMICAL BONDING, DIELECTRIC CONSTANT, GALLIUM COMPOUND, SELENIDE, BOND ENERGY

UNCLASSIFIED

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1988/0572

STEP NO--UR/0449/70/004/002/0424/0425

CIRC ACCESSION NO--APO105557

-----UNCLASSIFIED-

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002201210020-1"

PROCESSING DATE--18SEP70 UNCLASSIFIED 023 CIRC ACCESSION NO--AP0105557 ABSTRACT. THE CHANGE IN THE ABSORPTION ABSTRACT/EXTRACT--(U) GP-0-COEFF., K. WAS DETD. FOR A GASE SINGLE CRYSTAL AND FOR SOLID SOLNS. DUE TO THE ACTION OF AN ELEC. FIELD. THE SPECTRAL DEPENDENCE OF K WAS FOUND IN THE ABSENCE OF A FIELD, AND THE CHANGE, DELTA K, WAS MEASURED AT TYDEGREES K FOR A FIELD E EQUALS E SUBO PLUS E SUBVAR, WHERE E SUBO IS THE CONST. COMPONENT AND E SUBVAR IS THE VVARIABLE COMPONENT OF THE FIELD. THE SPECTRAL DEPENDENCE OF DELTA K OBTAINED AT E SUBO EQUALS E SUBVAR EQUAL 2.5 TIMES 10 PRIMES V-CM WAS USED TO CALC. THE WIDTH OF THE FORBIDDEN BAND (DELTA E SUBG EQUALS 2.109 PLUS OR MINUS 0.002 EV) AND THE BOND ENERGY OF THE EXCITON (G EQUALS 0.021 PLUS OR MINUS 0.002 EV) FROM THE POSITIONS OF THE 1ST, N EQUALS 1, AND 2ND, N EQUALS 2, NEG. MIN. THE EFFECTIVE MASS OF THE EXCITON, M. EQUALS 0.15M-SUBO, AND THE RADIUS OF THE 1ST BOHR ORBIT, ALPHA EQUALS 34 ANGSTROM, WERE CLACD. BY USING THE VALUE OF THE STATISTICAL DIELEC. CONST. FOR GASE, EPSILON SUBO EQUALS 9.8.

HAC I ASSIFTED

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002201210020-1"

CRYSTALS -U-

PROCESSING DATE - 2010-10

UNCLASSIFIED TITLE--EXCITATION AND PHOTOLOMINESCENCE SPECTRA OF GAS SUBX SE SUBI-X

AUTHOR-1021-KARAMAN, M.I., MUSHINSKIY, V.P.

CCUNTRY OF INFO-USSR

1/2

SOURCE-FIZ. TEKH. POLLPRCV. 1970, 4(3), 560-2

DATE FUBLISHED----70

SUBJECT AREAS--PHYSICS

TOPIC TAGS--PHOTGLUMINESCENCE, SINGLE CRYSTAL, EXCITATION ENERGY, GALLIUM SULFIDE, GALLIUM SELENIDE, ABSORPTION BAND SPECTRUM, ABSORPTION COEFFICIENT, TEMPERATURE EFFECT, ACTIVATION ENERGY

CONTROL MARKING-NO RESTRICTIONS

DECUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--2000/1307

STEP NO--UR/0449/70/004/003/0560/0562

CIRC ACCESSICA NO--APO124958

UNCLASSIFIED

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002201210020-1"

PROCESSING DATE-20NOV70 UNCLASSIFIED 2/2 036 CIRC ACCESSION NO--AP0124958 ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. THE LUMINESCENCE OF SINGLE CRYSTALS UF A CONTINUOUS RANGE OF SOLID SOLNS. OF GAS SUBX SE SUB1-X WAS STUDIED AT 77DEGREESK. THE EXCITATION SPECTRUM CONSISTS OF 1 BROAD BAND GRADUALLY BROADENING WITH TRANSITION FROM GAS TO GASE. FOR CRYSTALS WHERE X IS SMALLER THAN OR EQUAL TO 0.5. LUMINESCENCE IN THE LONGWAVE REGICN ADJCINS THE EDGE OF THE ABSORPTION BANDS. THE LUMINESCENCE CONSISTS OF 2 BANDS. SHORTWAVELENGTH BANDS OF MEDIUM INTENSITY HAVE EXCITCN CHARACTER. THE STOKES DISPLACEMENT GRADUALLY DECREASES FROM GAS TO GASE. IT IS 0.05 EV FOR GASE. USING MOTT'S FURMULA FOR THE DEPENDENCE OF INTENSITY OF LUMINESCENCE ON TEMP., THE CALCO. ENERGY OF ACTIVATION WAS 0.39 AND 0.37 EV FOR GAS AND GASE, RESP. FACILITY: KISHINEV. GOS. UNIV., KISHINEV, USSR.

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002201210020-1"

1/2 024 UNCLASSIFIED PROCESSING DATE--27NOV70

TITLE--PHOTOMAGNETIC EFFECT IN GALLIUM SELENIDE -U-

AUTHOR-(02)-KARAMAN, M.I., MUSHINSKIY, V.P.

COUNTRY OF INFO--USSR

SOURCE-FIZ. TEKH. POLUPROV. 1970, 4(5), 1002-4

DATE PUBLISHED ---- 70

SUBJECT AREAS--PHYSICS

TUPIC TAGS--GALLIUM SELENIDE, SINGLE CRYSTAL, PHOTOMAGNETIC EFFECT.

PHOTOCONDUCTIVITY

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3007/0905

STEP NO--UR/0449/70/004/005/1002/1004

CIRC ACCESSION NO--APO136339

UNCLASSIFIED

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002201210020-1"

PROCESSING DATE--27NOV70 UNCLASSIFIED 2/2 024 CIRC ACCESSION NO--APO136339 ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. THE PHOTOMAGNETIC EFFECT (PME) AND THE PHOTOCOND. WERE STUDIED OF P-GASE SINGLE CRYSTALS IN EQUALS 2.6 TIMES TO PRIME A CM PRIME NEGATIVES) PREPO. BY THE BRIDGMAN-STOCKBERGER METHOD. THE APPLIED MAGNETIC FIELD WAS SMALLER THAN 10 PRIME4 OE, SO THAT UH-C SMALLER THAN 1. THE SPECTRAL REGION OF PME LIES BEYOND THE EDGE OF THE PRINCIPAL ABSORPTION BAND OF GASE. THE SPECTRAL D DEPENDENCE OF PHOTOCOND. SHOWS A MAX. AT 610 MU. IMPLYING THAT THE RATE OF SURFACE RECOMBINATION IS NOT NEGLIGIBLE. THE SPECTRAL DEPENDENCE OF PME DECREASES UNIFORMLY TOWARDS THE LONGER WAVE BAND. THE DIFFUSION LENGTH OF THE CARRIERS & EQUALS 6.8 TIMES TO PRIME NEGATIVES CM IS EVALUATED FROM 1-1 SUBPME VS. 1-K PLOT (I SUBPME IS INTENSITY OF PME; K IS ABSORPTION COEFF.1. THE RATIO OF U SUBPHE AT THE MAX. TO THAT AT THE PLATEAU WAS USED TO CALC. THE RATE OF SURFACE RECOMBINATION S EQUALS 2.5 TIMES 10 PRIMES CM-SEC AND THE LIFETIME OF THE ELECTRONS 2.3 TIMES FACILITY: KISHINEY. GOS. UNIV., 10 PRIME NEGATIVES SEC. KISHINEV, USSR.

-- UNCLASSIFIED

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002201210020-1"

1/2 052
UNCLASSIFIED PROCESSING DATE--090CT70
TITLE--HIGH PRESSURE BALLOONS MADE FROM GLASS FIBER REINFORCED PLASTICS

AUTHOR-(05)-BIGULA, B.A., GUMENYUK, V.S., KARAMASH, N.P., KRISTUK, A.A., URBANSKIY, S.V.

COUNTRY OF INFO-USSR

SOURCE-MEKH. POLIM. 1970, 6(1), 149-52

DATE PUBLISHED ----- 70

SUBJECT AREAS-MATERIALS

TOPIC TAGS--HIGH PRESSURE, BALLOON, GLASS FIBER, REINFORCED PLASTIC, MATERIAL DEFORMATION, MECHANICAL STRENGTH, TEST METHOD/(U)HC55 6 250 GLASS, (U)EFB4 REINFORCED PLASTIC

CONTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME-1994/0025

SIEP NU--UR/0374/70/006/001/0149/0152

CIRC ACCESSIUN NO-APOI14425

UNCLASSIFIED

2/2 052	0.102710011	PROCESSING DATE090CT70	
CIRC ACCESSION NO-APO114425 ABSTRACT/EXTRACT(U) GP-O- ELLIPSOID BALLOCN PREPD. F DESCRIBED. DEFORMATION, S	ABSTRACT. LUNSTRUCT		
FACILITY: INST. MEKH.	, KIEV, USSR.		
最終 (1947年) - 1947年) - 1947			
	GLASSIFIED	consultantes said limitor (150-312 352) Fri Santo (1514-341 250)	1716

USER

UDC: 681.327.12

को रामस्य प्रशास के प्रति । इस्ते प्रोक्षण के मानि । इस्ते । विशेषी अने मानि के विशेषी अपने प्रति । इस्ते प्रति

FRIDMAN, G. Kh., TSVETOV, Ye. R., KARAMNOV, V. T., GALUSHEHCNKO, V. V.,

"An Optical-Electronic Device for Pattern Recognition"

Moscow, Otkrytiya, Izobreteniya, Promyshlennyye Obraztsy, Tovarnyye Znaki, No 32, Nov 71, Author's Certificate No 318967, Division G, filed 13 Apr 70, published 28 Oct 71, p 151

Translation: This Author's Certificate introduces an optical-electronic device for pattern recognition which contains a coherent light source, collimator, transparency with recognition and reference patterns, Fourier transform lens, spatial light modulator, and photomultiplier, all located along an optical axis. The photomultiplier is connected to the signal input of a high-frequency filter. The device also contains an electronic oscilloscope. As a distinguishing feature of the patent, speed is increased and interference suppression is improved by using a synchropulse light pickup, a control voltage oscillator, and a series circuit comprised of a wide-band amplifier and a signal envelope detector. The spatial light modulator is made in the form of a photographic film carrying a hologram of a variable-period lattice wrapped around a transparent thin-walled cylinder rotated by an

UZJR.

FRIDMAN, G. Kn., et al., Soviet Patent No 318967

electric motor. The photomultiplier is fastened on a fixed base inside the rotating cylinder. In the base of the cylinder is an opening for the synchropulse light pickup, which is connected to the input of the control voltage oscillator and to one of the inputs of the oscilloscope. The output of the controlling voltage oscillator is connected to the controlling input of the high-frequency filter. The output of this filter is connected to the input of the wide-band amplifier, and the signal envelope detector output is connected to the other input of the oscilloscope.

2/2

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002201210020-1"

USSR

UDC 669.24/.25.053.4.094

SPITCHENKO, V. S., KARAMULLIN, S. A., TSEFT, A. L., ROMANTEYEV, Yu. P.

"Principles of Sulfuric Acid Leaching of Oxidized Nickel Ores"

Nauch. tr. Kazakhsk. Politekhn. In-t. [Scientific Works of Kazakh Polytechnical Institute], Alma-Ata, 1971, pp 521-525, (Translated from Referativnyy Zhurnal, Metallurgiya, No 5, 1972, Abstract No 5 G392 by G. Svodtseva).

Translation: Ni- and Co-containing minerals, α -kerolite, β - kerolite, nontronite, and psilomelane were taken for investigation. The consumption of acid was significantly greater than the required quantity for dissolution of all acid-soluble components in the mineral. The dissolution of Ni and Co from the ore and its component minerals occurs in the kinetic area. The similarity of the "apparent" activation energies of dissolution of Ni from the ore (14,460 cal/mol) and β -kerolite (14,300 cal/mol) and Co from the ore (12,820 cal/mol) and psilomelane (13,120 cal/mol) confirm the results of mineralogical studies, which indicated that the basic mineral containing Ni in the ore is β -kerolite, while the basic mineral containing Co is psilomelane. Three figures, 4 biblio, references.

1/1

en la propositation de la completa d Se la completa de completa de la comp

USSR UDC 612.821.4

KARAMYAN, A. I., SOLIERTINSKAYA, T. N., and BALANOV, L. Ya., Institute of Evolutional Physiology and Biochemistry imeni I. M. Sechenov, Academy of Sciences USSR, Leningrad

"An Electrophysiological Analysis of the Psycholytic Action of Chlorpromazine and Barbamil"

Yerevan, Biologicheskiy Zhurnal Armenii, Vol 25, No 6-7, Jun/Jul 72, pp 80-94

Abstract: Effects of chlorpromazine and barbamil on deep brain structures were studied on rabbits. Preliminary electrostimulation tests demonstrated that stimulation of the posterior and anterior hypothalamus, the reticular formation, and thalamic nuclei produced generalized exaltative reactions in the cortex specific to the particular formation stimulated. Moreover it was found that the nature of the reaction depends on the activity level of these structures. For example, stimulation of the reticular formation and posterior hypothalamus after prior, repeated stimulation of the anterior hypothalamus produces a reaction characteristic to stimulation of the anterior hypothalamus. Tests with the drugs themselves showed that chlorpromazine increases the activity of the anterior hypothalamus, causing diffuse inhibition of the brain's nonspecific systems: It decreases the activity of the brain stem reticular 1/3

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002201210020-1"

USSR

KARAMYAN, A. I., et al., Biologicheskiy Zhurnal Armenii, Vol 25, No 6-7, Jun/Jul 72, pp 80-94

formation, posterior hypothalamus, nonspecific thalamic nuclei, and caudate nuclei. Barbamil activates nonspecific thalamic systems and caudate nuclei, producing differential effects on brain activity: It decreases the activity of the brain stem reticular formation and posterior hypothalamas, blocks their communication with the neocortex, increases the activity of nonspecific thalamic nuclei and caudate nuclei, and facilitates pulse transmission both ways along corticothalamic routes. In both cases the affected structure dominates in response production as was noted with electrostimulation. Such changes in the source of generalized effects on the brain produced by the drugs are also reflected in changes of background activity and the nature of cortical reactions to afferent stimuli. For example in the presence of chlorpromazine, light, acoustic, and olfactory stimuli cause desynchronization of high-amplitude irregular slow waves, which is a reaction characteristic of a sensitized anterior hypothalamus. 'The animal's emotional responses to chlorpromazine and barbamil are identical to those produced by stimulating, respectively, the anterior hypothalamus on one hand and the nonspecific thalamic systems and caudate nuclei on the other. A comparison of these results with data obtained on human reactions supports the suggestion that when particular deep brain 2/3

.. ()

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002201210020-1"

USSR

KARAMYAN, A. I., et al., Biologicheskiy Zhurnal Armenii, Vol 25, No 6-7, Jun/Jul 72, pp 80-94

structures are activated, they dominate other structures in affecting the cerebral cortex, causing particular emotional and behavioral responses. This study indicates the usefulness of employing psycholytic drugs in demonstrating the function of deep brain structures.

3/3

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002201210020-1"

USSR

UDC 612.822.3.08

BATUYEV, A. S., VASILEVSKIY, N. N., ZIMENKO, N. V., TAIROV, O. P., and KARANYAN, L. A., Laboratory of the Physiology of the Motor Analysor, Physiological Institute imeni A. A. Ukhtomskiy, Leningrad University, and Department of Ecological Physiology, Institute of Experimental Medicine, Academy of Medical Sciences USSR

"A Simple Method of Recording Cerebral Neuronal Activity in Alert Animals"

Leningrad, Fiziologicheskiy Zhurnal SSSR imeni I. M. Sechenov, Vol 58, No 11, 1972, pp 1774-1776

Abstract: In preliminary surgery performed on the anesthetized animal, the head is held in a standard stereotaxic apparatus, the frontal bones (if the frontal cerebral lobes are to be investigated) are opened and the periostemu is removed, two screws are firmly implanted in each temporal bone, and the edges of the wounds are sealed with protacrylon. Penicillin is administered, and a certain period is allowed for recovery from surgery. Prior to the actual experiments, the animal is trained for several days to become accustomed to the motionless position in the modified stereotaxic instrument SEZh-1 or SEZh-2. During the test, the head is affixed to the stereotaxic instrument by means of the implanted screws. Holes are drilled in the frontal bones (painless 1/2

_ *6*7 _

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002201210020-1"

TELEGRAPH SECRETARIA (ELITERE LA MINITARIA) DE MANDE SER LA PERFORMACIÓN DE LA CAMBRICA DE LA CAMBRICA DE LA C LA CAMBRICA DE LA CAMBRICA DEL CAMBRICA DE LA CAMBRICA DE LA CAMBRICA DE LA CAMBRICA DEL CAMBRICA DE LA CAMBRICA DEL CAMBRICA DEL CAMBRICA DE LA CAMBRICA DE LA CAMBRICA DEL CAMBRICA DE

USSR

RATUYEV, A. S., et al., Fiziologicheskiy Zhurnal SSSR imeni I. M. Sechenov, Nol 58, No 11, 1972, pp 1774-1776

because of absence of periosteum), a local anesthetic is applied to the dura mater, the meninges are pierced, the recording electrode is inserted into the brain (with one of the implanted screws serving as the indifferent electrode), and the edges of the wound are covered with warm vaseline or agar. After completion of the test and withdrawal of the electrode, the opening is sealed with wax or dental cement. If proper antiseptic measures are taken, one chronic animal can be used for over 2 months, with three experiments performed each week.

2/2

K

USSR

UDC 621.791.754.293.011:669.71

KARAMYAN, R. S. Engineer, VOROPAY, N. M., Candidate of Technical Sciences, RABKIN, D. M., Doctor of Technical Sciences, Institute of Electric Welding imeni Ye. O. Paton

"Features of the Process of Arc-Welding Aluminum Alloys in Argon Under Elevated Pressure"

Moscow, Svarochnoye Proizvodstvo, No 1, Jan 70, pp 11-15

Abstract: Specimens of the AMg6 aluminum alloy were arc-welded in a protective atmosphere of argon under a pressure higher than atmospheric pressure to determine optimal conditions for this method of welding. It was found that before the welding chamber is filled with argon, it should be evacuated to about (2-3).10-2 mm Hg. Uso of transformers with increased no-lead voltage (up to 120 v) ensures reliable starting and burning of the arc at an argon pressure of 2-6 atm without decreasing the arc gap. The depth of weld penetration and the effective thermal power of the arc increase, and the zone of thermal effect becomes narrower, with the increased pressure of inert gas. Use of 1/2

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002201210020-1"

USSR

KARAMYAN, R. S., et al., Svarochnoye Proizvodstvo, No 1, Jan 70, pp 11-15

controlled atmosphere of argon under elevated pressure in welding of aluminum alloys inhibits the development of pores in the crystallizing metal. Moreover, the mechanical properties and the density of welds increases, and their chemical composition approaches that of the parent metal. This welding method is recommended for joining cast aluminum parts, and for small articles made of alloys containing easily vaporizing elements.

2/2

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002201210020-1"

1/2 036 UNCLASSIFIED PROCESSING DATE--230CT70
TITLE--THE PECULIARITIES OF TECHNOLOGY OF ARC WELDING OF THE ALUMINUM

ALLOYS IN ARGON AT ELEVATED PRESSURE +U-

AUTHOR-(03)-KARAMYAN, R.S., VOROPAY, N.M., RABKIN, D.M.

COUNTRY OF INFO--USSR

SOURCE-MOSCOW, SVAROCHNOYE PROIZVODSTVO, NO 1, 70, PP 11-15

DATE PUBLISHED----70

SUBJECT AREAS -- MATERIALS, MECH., IND., CIVIL AND MARINE ENGR

TOPIC TAGS--ALUMINUM ALLOY, ARGON GAS WELDING, BIBLIDGRAPHY, INERT GAS ARC WELDING, HIGH PRESSURE

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1996/2042

STEP NO--UR/0135/70/000/001/0011/0015

CIRC ACCESSION NO--APOL18996

UNCLASSIFIED

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002201210020-1"

CIRC ACCESSION NOAPOL18996 ABSTRACT/EXTRACT(U) GP-0-	ABSTRACT A STORE	PROCESSING DATE230CT70 NAS MADE OF THE PROBLEMS MENT USED IN THE PROCESS ATTROSPHERE AT ELEVATED	,
DEALING WITH TECHNOLOGY, TO THE WELDING OF ALUMINUM ALL PRESSURE BY NUNCONSUMABLE INSTITUTE OF ELECTRICAL WE SCIENCES UKRAINIAN SSR.	AND CONSUMABLE ELECTREDING IMENI YE. D. PA	PODES FACILITY:	
U	NCLASSIFIED		

1/2 026

UNCLASSIFIED

PROCESSING DATE--230CT70

TITLE--SEARCH FOR SUPER HEAVY ELEMENTS IN NATURE: BASES AND PERSPECTIVES

AUTHOR-(02)-FLEROV, G.N., KARAMYAN, S.A.

COUNTRY OF INFO--USSR, ITALY

SOURCE--JINR, P6, 4902 DEP. CFSTI (CONF-690945-1), FROM INTERNATIONAL MENDELEEV CONGRESS, TURIN, ITALY

DATE PUBLISHED ---- 70

SUBJECT AREAS--PHYSICS, ASTRONOMY, ASTROPHYSICS

TOPIC TAGS--HEAVY NUCLEUS, ATOMIC MASS, ISOTOPE SEPARATION, COSMIC RAY, STAR

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1992/0035

STEP NO--UR/0000/70/000/000/0001/0036

CIRC ACCESSION NO--AMOIL1235

UNCLASSIFIED

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002201210020-1"

लो स्थिति । विद्यालया ।

PROCESSING DATE--230CT70 UNCLASSIFIED 2/2 CIRC ACCESSION NO--AMOII1235 ABSTRACT. THE EXISTENCE OF LONG LIVED SUPER ABSTRACT/EXTRACT--(U) GP-0-HEAVY ELEMENTS IN NATURE AND THEIR SYNTHESIS IN STARS ARE DISCUSSED. THEORETICAL PREDICTIONS OF PHYSICAL AND CHEMICAL PROPERTIES OF THESE ELEMENTS WERE ANALYZED. EXPERIMENTAL RESULTS OF THE SEARCH FOR SUPERHEAVY ELEMENTS IN NATURE AND IN COSMIC RAYS ARE REVIEWED. PERSPECTIVES OF DEVELOPMENT OF EXPERIMENTAL INVESTIGATIONS IN THIS FACILITY: JOINT INST. FOR NUCLEAR DIRECTION ARE CONSIDERED. FACILITY: LAB. OF NUCLEAR REACTIONS. RESEARCH, DUBNA, USSR. UNCLASSIFIED

CHANGE CONSTRUCTOR AND PROPERTY OF THE PROPERT

USSR

UDC 577.1:615.7/9

KIRICHEK, L. T., KARAMYSHEV, A. N., NALBAT, A. S., KOSENKO, P. I., KHARCHENKO, N. S.

"Some Aspects of the Systemic Toxic Action of Metaphos"

Farmakol. i toksikologiya. Resp. mezhved.sb. (Pharmacology and Toxicology. Republic Interdepartmental Collection of Works), 1970, No 5, pp 205-208 (from RZh-Biologicheskaya Khimiya, No 19, 10 Oct 70, Abstract No 19 F1803 by A. Ignat'yev)

Translation: After a single injection of rats, cats, and rabbits with metaphos at doses of 1-1/2 LD50, there are not only the specific toxic effects produced by the insecticide but changes in liver function: decrease in total serum protein, dysproteinemia, decreased cholinesterase activity in serum and liver tissue, positive thymol test, change in duration of prothrombin time, decrease in glycogen level of the liver, increased amount of protein in urine, decreased diuresis after a water load, and histologic changes in all organs.

1/1

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002201210020-1"

USSR

UDC: 534.113:624.042.8

TSVENIASHVILI, D. Kh., KARAMYSHKIN, V., Moscow

"Dynamic Stability of Schematic Cantilever Under the Influence of a Tracking, Pulsating Load"

Kiev, Prikladnaya Mekhanika, Vol 6, No 11, 1970, pp 134-137

Abstract: The dynamic stability of a cantilever beam with a concentrated mass at the free end is studied under the influence of a tracking, harmonic load. The differential equation of motion considering the inertia of rotation of the load is solved by the method of expansion into trigonometric series. Expressions are produced for the construction of the areas of dynamic instability and it is demonstrated that the inertia of rotation of the load worsens the dynamic stability of the rod.

1/1

IJSSR

K

UDC: 534.14

KARAMYSHKIN, V. V., TYABLIKOV, Yu. Ye., Moscow

"Consideration of Energy Dissipation in Resonant Modes with Hydraulic Excitation"

Kiev, Problemy Prochnosti, No 9, 1970, pp 73-76

Abstract: A study is made of the possibility of maintaining stable oscillating modes in tests of models, structures and structural elements on vibrating test platforms at frequencies near the frequencies of natural oscillations of the objects being tested. The test object in this analysis is assumed to be a beam of constant cross section fastened to the vibrating platform. Then, considering the elastic-viscous nature of energy dissipation, an equation is written for the motion of the elements in the system and analyzed. It is found that at the resonant frequency of the rod under certain conditions the rod actually acts as a vibration damper.

1/1

75.

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002201210020-1"

USSR

KARAMZINA, N. M., GRODETSKAYA, N. S., PAVLENKO, G. I.

"Interrelation at the Stage of Primary Reactions of the Organism of Processes of Adaptation and Chemical Interaction and Processes of Compensation of Subsequently Resulting Pathological Changes"

Sb. "Farmakol. Khimioterapevt. sredstva. Toksikol. Probl. toksikol, (Pharmacology of Chemically Therapeutic Substances. Toxicology. Problems in Toxicology--Collection of Works), T. 5 (Itogi nauki i tekhn. VINITI AN SSSR = Results in Science and Technology of the All-Union Institute of Scientific and Technical Information, Academy of Sciences of the USSR), 1973, pp 145-162 (from Referativnyy Zhurnal, 30F, Biologicheskaya Khimiya, No 18, 25 September 1973, abstract No 18F1747)

Translation: The primary reactions of animals to the action of Hg, CS₂, benzene, CCl₄, morpholine, dimethylformamide, ethylene oxide, bromoacetopropyl acetate, ethyleneimine, POCl₃, NaF, triphthazine, and monoallylamine and their effects on the function of the thyroid, adrenal, and pituitary glands were studied to determine the characteristic state of the nonspecific regulatory systems of the organism. The results permitted evaluation of the hygienically significant changes due to the action of different chemical compounds.

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002201210020-1"

UDC 577.1:615.7/9

USSR

KARAMZINA, N. M., and MEL'NIKOVA, L. V.

"Some Initial Reaction of the Animal Endocrine System to Repeated Exposure to m-Aminobenzotrifluoride at Low Concentrations

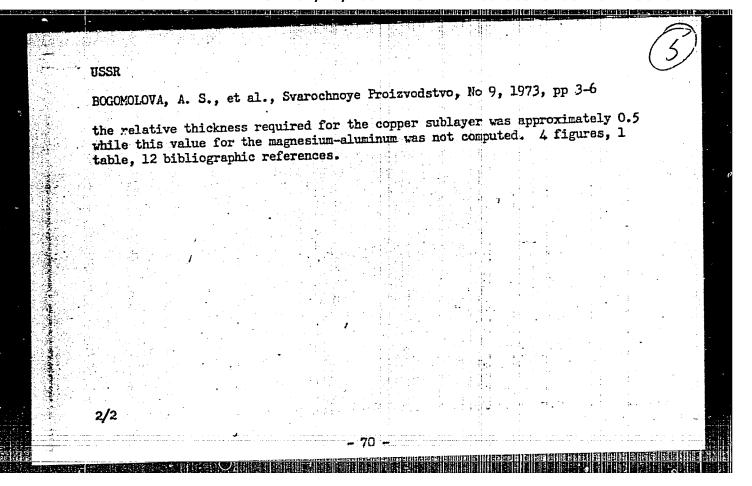
V sb. Toksikol. novykh prom. khim. veshchestv (Toxicology of New Industrial Chemicals -- collection of works), No 12, Moscow, "Meditsina," 1971, pp 20-23 (from RZh-Biologicheskaya Khimiya, No 14, Jul 71, Abstract No 14 F1623)

Translation: Rats inhaled m-aminobenzotrifluoride (I, 0.0014 mg/1, once or 5 times for 4 hours a day). Thyroid function was judged from Il31 uptake while the activity of the hypophyseal-adrenal system was evaluated from the amount of ascorbic acid in the adrenals and their weight factor. After exposure to I, the amount of I131 taken up was found to increase significantly from 20.9 to 29.5% 4 hours after a single exposure and from 21.4 to 26.3% 24 hours after 5 exposures. No changes were observed in adrenal function. The authors believe that the functional changes in the thyroid after 5 days' exposure to I are the initial manifestation of chronic poisoning. 1/1

čō...

COUNTERS OF THE PROPERTY OF TH

UDC 621.791:621.642.001.2


USSR

BOGOMOLOVA, A. S., Candidate of Technical Sciences, and BAKSHI, O. A., Doctor of Technical Sciences, Chelyabinsk Folytechnic Institute; SEDYKF. V. S., Doctor of Technical Sciences, and TRYKOV, YU. P. and BELOUSOV, V. P., Candidates of Technical Sciences, Volgograd Polytechnic Institute; BORISOVA, V. A., KARAN, A. B., POPOV, A. S., and SAPRYGIN, V. D., Engineers, Moscow

"Practical Design of Welded Vessels and Pipe From Dissimilar Materials"

Moscow, Svarochnoye Proizvodstvo, No 9, 1973, pp 3-6

Abstract: Welding tests were conducted for welding dissimilar materials to join dissimilar metals in the fabrication of vessels and pipe. A steel+copper+ niobium+titanium joint was made from steel Khl8NlOT, Ml copper, niobium, and OT4 titanium, and a magnesium alloy+titanium+aluminum+aluminum alloy joint was made from magnesium alloy MA2-1, VTl titanium, Adl aluminum, and aluminum alloy AMg6. The goal of this work was to determine the proper materials which would yield a reliable diffusion barrier in the intermediate weld layers, and a joint with a strength equal to that of the base metal. Mathematical formulas are given for calculating the tensile and yield strengths of the soft sublayer and critical magnitude of rolative thickness of the soft sublayer for which an equal-strength joint can be achieved. For the titanium-steel joint the

USSR

UDC 621.791.052:621.313.23.002.612

VOLIKOVA, I. G., Candidate of Technical Sciences, KARANGE FURNISHED Union Scientific Research Institute for Chemical Machine Building, and STROYEY, V. S., Engineer, Moscow Experimental Welding Plant

"The Effect of the Ferrite Phase on the Corrosion Resistance of Welded Kn18N10T Steel Joints"

Moscow, Svarochnoye Proizvodstvo, No 3, Mar 70, pp 11-13

Abstract: The effect of the ferrite phase on the corrosion resistance of welded joints of Khl8N10T steel was investigated. Tests were carried out on 5.5 x 30-mm weld metal and welded samples cut from the two upper layers of ten-fold welds. The given ferrite quantity in the metal welded by electrodes made of test metals and various alloy compositions was achieved by varying the metallic Cr and FeWb content in the deposed composition. The ferrite content in the welded metal was determined by a volume method on a ballistic facility and in the weld metal by an alpha-phase-meter. The chemical composition of Khl8N10T steel is given in a table. The effect of the ferrite on the corresion resistance of the welded metal was determined by a test in 65% boiling mitric acid (5 cycles of 48 hr), and also by the AM method (GOST 60 32-58), and in production on samples with transversal, longitudinal, and criss-cross welds.

VOLIKOVA, I. G., et al, Svarochnoye Proizvodstvo, No 3, Mar 70, pp 11-13 USSR

The corrosion resistance was evaluated by weight-loss data and by retallographic analysis. The nature of the dissolution of welded metals produced by CrNi and standard electrodes in 65% nitric acid is discussed. The results show that the presence of titanium or niobium in a CrNi solid solution reduces its corrosion resistance. Tests conducted on welded samples by the Ari method showed that not a single sample was disposed toward intercrystalline corresion. They also show that the presence of ferrite (regardless of quantity) in the Welded alloys of This lot steel does not reduce its corrosion resistance in media. An increased miobium content in type-18-8 welded metal (with an Nb/C ratio of 12 or more) reduces its corrosion resistance. Orig. art. has: 2 figures, 1 tables, and 5 references.

2/2

USSR

UDC 539.3

KARANDAKOV. G. V., KEROPYAN, K. K., NAZATROV, V. M.

"Calculation of the Circular Anisotropy,Orthotropy and Isotropy of a Plate of Constant Rigidity on an Elastic Base by the Electric Modeling Method"

Tr. Novocherkas. politekhn. in-ta (Works of Novocherkassk Polytechnical Institute), 1972, No. 253, pp 66-71 (from RZh-Mekhanika, No 3, Mar 73, Abstract No 3V170)

Translation: The possibility of applying multilayer grid electric models of biharmonic operators to calculate circular anisotropic, orthotropic and isotropic plates on a single-layer elastic base with two characteristics is established. The electrical models used in the paper are distinguished from the familiar models in that the biharmonic operators are directly modeled, not requiring their division into systems of second-order operators. 6 ref. Authors' abstract.

UNCLASSIFIED PROCESSING DATE--18SEP70
TITLE--EFFECT OF TRINITROPHENYLATION OF MYOSIN ON THE ISOTOPIC EXCHANGE OF
OXYGEN IN THE MYOSIN ATP H SUB 2 PRIME 18 O SYSTEM -UAUTHOR-(03)-KULEVA, N.V., KARANDASHOV, F.A., PANTELEYEVA, N.S.

COUNTRY OF INFO--USSR

SOURCE--BIOKHIMIYA 1970, 35(1), 42-7

DATE PUBLISHED----70

SUBJECT AREAS-BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS--MUSCLE PHYSIOLOGY, ADENDSINE TRIPHOSPHATE, ORGANIC NITRO COMPOUND, BENZENE DERIVATIVE, ORGANIC SULFUR COMPOUND, OXYGEN METABOLISM

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1984/0862

STEP NO--UR/0218/70/035/001/0042/0047

CIRC ACCESSION NO--APO055562

UNCLASSIFIED

UNCLASSIFIED PROCESSING DATE—18SEP70

CIRC ACCESSION NO—APOOSS562

ABSTRACT/EXTRACT—(U) GP—O— ABSTRACT. THE BINDING UF FREE NHSUB2 GROUPS
BY 2,4,6—TRINI—TROBENZENESULFONATE (THRS) IN MYOSIN ATPASE INHIBITED, BY
40—70PERCENT, THE ISOTOPIC O EXCHANGE REACTION CATALYZED BY MYOSIN
DURING ATP HYDROLYSIS. HCWEVER THAS TREATHENT ACTIVATED ATPASE IN THE
DURING ATP HYDROLYSIS. HCWEVER THAS TREATHENT ACTIVATED ATPASE IN THE
NHSUB2 GROUPS. THE THRS EFFECT OF ISOTOPIC O EXCHANGE AND ATPASE
NHSUB2 GROUPS. THE THRS EFFECT OF ISOTOPIC O EXCHANGE AND ATPASE
NHSUB2 GROUPS. THE THAT OF ACTIVA. CONFORMATIONAL CHANGES IN THE
ACTIVITY WAS SIMILAR TO THAT OF ACTIVA. CONFORMATIONAL CHANGES IN THE
ACTIVE CENTER OF MYOSIN MAY OCCUR DURING FORMATION OF TRINITROPHENYLATED
RESIDUES.

UNCLASSIFIED

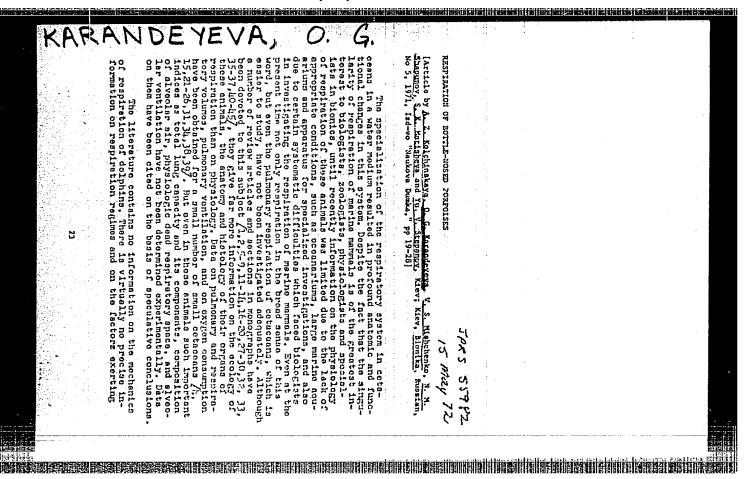
UNCLASSIFIED

UNCLASSIFIED

USSR

UDC: 621.317.7(02)

KARANDEYEV, K. B., GRINEVICH, F. B., GROKHOL'SKIY, A. L. et al.


"Electronic High-Speed Balanced-Bridge Instruments"

Bystrodeystvuyushchiye elektronnyye kompensatsionno-mostovyye pribory (cf. English above), Moscow, "Energiya", 1970, 135 pp, ill. 35 k. (from RZh-Radio-tekhnika, No 12, Dec 70, Abstract No 12A294 K)

Translation: The book deals with monitoring and measuring equipment designed for measuring the components of impedance under a variety of experimental and production conditions. The time for a single measurement of impedance parameters may be reduced to hundredths of a millisecond, and measurement error may be held down to tenths of a percent. The principles of construction of high-speed electronic balanced-bridge instruments are set forth, their fundamental properties are outlined and their specific elements are given, and schematics are analyzed together with the characteristics of a number of specific devices. Annotation.

1/1

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002201210020-1"

	AA0038611 ⁻	K	UR 0482	-7 <i>0</i>
	Soviet Inventions Illustrate	d, Section I Chem	ical, Derwent,	
	degreating, under a high 2-2hrs, after which the and maintained for not mount of not less than 0. medium in which the cont	ted by heating them after vacuum at 400-1000°C temp. is lowered to 50 more than 8 hrs. at a p.5 atm. in the same gas acts are intended to 0 3391/24-7. A.M LEPSKII on "Krasnaya Zarya".	er for -200°(res- per-	4
	AUTHORS: Lepskiy, A. M.; and Aleksandrov	Karandina, V. A	; Vasil'yav. A.	M.;
: 1 1 1 1	Leningradskoye Proizvodst Zarya"		niye "Krasnava	
	/	40021		e distant

UDC 636.083.37

USSR

KARANFILOV. N. I., Chairman of Kolkhoz imeni M. V. Frunze, Ovidiopol'skiy Rayon, Odesskaya Oblast, Honored Veterinarian, Ukrainian SSR, FAYTEL'BERG, R. O., Doctor of Medical Sciences, TKACHENKO, G. P., Candidate of Biological Sciences, Senior Scientific Associate, Odessa State University imeni M. I. Mechnikov, MEDVEDEVA, Ye. I., Doctor of Biological Sciences, PANCHENKO, K. A., PETRENKO, Ye. V., LUKINA, G. D., Senior Engineers, BOYKO, L. I., and SELICH, Ye. F., Engineers, Odessa Technological Institute of the Food Industry imeni M. V. Lomonosov

"The Effect of a Preparation Obtained From Algae (Phyllophora) Upon the Weight Gains and Blood Composition of Calves"

Moscow, Zhivotnovodstvo, No 3, Mar 72, pp 82-83

Abstract: A valuable preparation containing amino acids and peptides has been developed from industrial Phyllophora waste by the Odessa Technological Institute of the Food Industry (Author's Certificate No 287959). Employed as a fodder supplement, 4.5 kg of the preparation yield an incremental weight gain of 11.43 kg, in other words, 2.54 kg of meat for each kilogram of the preparation, which costs less than 30 kopeks. The erythrocyte number of the calves increases, as does the hemoglobin content and the total protein content. Additional testing is recommended.

unc 621.315.592

USSR

KARANOVA, YE. K., DEMAKOV, D. K., STARININ, K. V., STREL TSOV, and KHAYBULLIN, 1. B.

"Study of Single-Crystal Sic Films Obtained by Bombardment of Si Single Crystals With O' Ions"

Moscow, Doklady Akademii Nauk SSSR, Vol 200, No 4, 1971, pp 869-870

Abstract: The authors obtained SiC films by bombarding Si single crystals with atomic carbon ions with an energy of 40 kev and a dose of over 1017 ions/cm2 at 600 and 700°. IR absorption spectra were used to identify the ion-implanted films with the SiC compound. Electron-diffraction studies made on the ion-implanted SiC layers by the reflection method showed that a temperature of 700° is necessary to create single-crystal SiU film by the ion bombardment method. To study the structure of the n-SiC-n- and p-Si hetero-junctions created by the ion method, measurements were taken of the photo-emf spectra and I-V characteristics of these junctions. The results indicate a correspondence between the real energy structure of the heterojunction and the theoretical one. The method of creating heterostructures by ion irradiation makes it possible to create single-crystal layers of compounds of the implanted ion with atoms of the elements making up the sub-

USSR

KARANOVA, YE. K., et al., Doklady Akademii Nauk SSSR, Vol 200, No 4, 1971, pp 869-870

strate, even in the case of a great difference between the lattice constants of the compound and those of the substrate.

2/2

- 78 -

USSR

UDC 54-162.3

GINZBURG, F. L., KARANTSEVICH, T. S., and MAKSIMOV, V. F.

"The Problem of the Coprecipitation of Plutonium and Americium With a Precipitate of Barium Sulfate"

Leningrad, Radiokhimiya, Vol 15, No 4, 1973, pp 481-487

Abstract: The conditions for coprecipitation of americium and plutonium with BaSO₄ precipitate was investigated. It was shown that quantitative precipitation takes place from 0.001 M HNO₃ solution. Plutonium can be redissolved by treating the BaSO₄ precipitate with > 1 M HNO₃ solution. Under these conditions the desorption of americium does not exceed 40-50%. Both americium and plutonium coprecipitated with BaSO₄ from nitrate solutions containing aluminum and lanthanum nitrates may be fully redissolved by treating the precipitate with > 1 M HNO₃.

1/1

-65

7

USSR

UDC: 681.332.65

ASOYAN, L. M., BELKIN G. G., GRIGORYAN, R. Kh., KARANYAN, K. Kh., ABADZHYAN, S. S., GEVORKYAN, S. G.

"Parallel Barker Code to Parallel Binary Code Converter"

USSR Authors' Certificate No 249762, Filed 2 April 1968, Published 15 January 1970 (Translated from Referativnyy Zhurnal Avtomatika, Telemekhanika i Vychislitel'naya Tekhnika, No 10, 1970, Abstract No 123P, by L. Sh.)

Translation: The converter suggested contains a register, each digit of which with the exception of the low-order digit, is made of two flip-flops connected with buses corresponding to the subdigits of Barker code and logic circuits. The ones and zeros outputs of the flip-flops of each digit are connected to two pairs of AND circuits respectively. The outputs of the AND circuits of each pair are connected through an OR circuit and delay line to the inputs of the second flip-flop of the same digit. The output of the OR circuit connected to the ones output of the triggers of the digit in question is connected also to the AND circuits connected to the outputs of the second flip-flop of the next digit. The output of the OR circuit connected to the zero outputs of the flip-flops is connected to the AND circuit which is connected to the outputs 1/2

USSR

ASOYAN, L. M., USSR Authors' Certificate No 249762, Filed 2 April 1968, Published 15 January 1970 (Translated from Referativnyy Zhurnal Avtomatika, Relemekhanika i Vychislitel'naya Tekhnika, No 10, 1970, Abstract No 123P, by L. Sh.)

of the first flip-flop of the next digit. The ones outputs of the low-order digit flip-flop and the second flip-flops of the next digits are used as outputs corresponding to binary code. The circuit suggested combines the functions of a Barker code to parallel binary code converter with the functions of memorization of the binary code. One illustration.

2/2

1/2 029 UNCLASSIFIED PROCESSING DATE-300CT7C TITLE-DIAGNOSTIC SIGNIFICANCE OF IN VITRO LEUCOCYTE LYSIS IN RHEUMATISM

AUTHOR-(02)-KARAPATA. A.P., VYSOTSKAYA, ZH.M.

COUNTRY OF INFO-USSR

SOURCE--VRACHEBNOYE DELO, 1970, NR 4, PP 28-30

DATE PUBLISHED----70

SUBJECT AREAS-BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS-DIAGNOSTIC METHODS, LEUKOCYTE, RHEUMATIC DISEASE, ANTIGEN, HEMOLYSIS, TEST

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3002/1708

STEP NO--UR/0475/70/000/004/0028/0030

CIRC ACCESSION NO--APO129078

UNCLASSIFIED

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002201210020-1"

UNCLASSIFIED PROCESSING DATE--300CITO
CIRC ACCESSION NO--APO129078
ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. LEUCOCYTOLYTIC PROPERTIES HAVE
BEEN REVEALED OF EXTRACTS FROM ORGANS OF THOSE DYING FROM RHEUNATISM AS
WELL AS OF THE HEMOLYSED BLOUD OF PATIENTS WITH ACTIVE RHEUMATISM. IT
IS SUGGESTED THAT LYSIS OF LEUCOCYTES IN RHEUMATIC PATIENTS IS CAUSED BY
A TISSUE ANTIGEN AND HEMOLYSED BLOUD AND MAY BE A SENSITIVE AND RATHER
SPECIFIC TEST FOR ACTIVITY OF THE RHEUMATIC PROCESS. THE TEST IS
RECOMMENDED FOR WIDE USE BECAUSE OF ITS SIMPLICITY. FACILITY:
KIYEVSKIY NAUCHNO ISSLEDOVATEL'SKIY INSTITUT KLINICHESKOY MEDITSINY IM.
AKAD. N. D. STRAZHESKO.

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002201210020-1"

UNCLASSIFIED

1/2 012 UNCLASSIFIED

PROCESSING DATE--18SEP70

TITLE--ON AUTOGENIC DEVELOPMENT OF OVARIES IN SOME SPECIES OF MOSQUITOES

OF TURKMENIA -U-

AUTHOR-(02)-BABAYANTS, G.S., KARAPETYAN, A.B.

COUNTRY OF INFO--USSR

SOURCE--MEDITSINSKAYA PARAZITOLOGIYA I PARAZITARNYYE BOLEZNI, 1970, VOL 39, NR 1, PP 24-29

DATE PUBLISHED ---- 70

SUBJECT AREAS--BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS--MOSQUITO, POPULATION LEVEL

CONTROL MARKING--NG RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1985/0409

STEP NO--UR/0358/70/039/001/0024/0029

CIRC ACCESSION NO--AP0100891

UNCLASSIFIED

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002201210020-1"

PROCESSING DATE--18SEP70 UNCLASSIFIED 2/2 012 CIRC: ACCESSION NO--AP0100891 ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. OBSERVATIONS OF FEMALE MOSQUITOES OF 12 POPULATIONS BELONGING TO 10 SPECIES IN TURKMENIA PROVED FOR THE FIRST TIME THE CAPACITY FOR AUTOGENIC DVOGENESIS IN UR. UNGUICULATA EDW., A. PULCHERRIMUS THEOR., ALLOTHEOB. LOGIAREOLATA MACO. IN THE MOSQUITO FAUNA OF TURKMENIA AUTOGENIC POPULATIONS OF AE. CASPIUS PALL., CULEX PUSILLUS MACQ., C. MODESTUS FIC., C. PIPIENS, CULISETA ANNULATA SUBOCHREA EDW. WERE REVEALED. THE CAPACITY OF AUTOGENIC OVOGENESIS WAS FOUND TO BE MOST INHERENT IN POPULATION OF MOSQUITOES INHABITING HOT DRY DESERTS. NATA 1224 LIMIL

A CONTROL OF THE CONT

USSR

UDG 658.512.2:681.3(024)

KARAPETYAN. A. M.

Avtomatizatsiya Optimal'nogo Konstruirovaniya Elektronnykh Vychislitel'nykh Mashin (Automation of Optimal Electronic-Computer Design), Moscow, "Sov. Radio" (Soviet Radio), 1973, 152 pp, ill., Annotation p 2, Table of Contents p 150

Translation of Annotation: The book discusses questions relating to the optimization of computer design on the basis of a number of generalized criteria characterizing thermal conditions, reliability, technological qualities, etc. Light is shed on various directions taken in optimization and on the nature and peculiarities of generally accepted methods for the automation of design planning. Algorithms are presented for typical problems in the design of subassemblies, blocks, and racks.

The book is intended for computer designers engaged in the automation of design planning, as well as for university students in the specialties in question.

1/5

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002201210020-1"

cow, "Sov. Radio,"		
	rA()! The bb	
CONTENTS		Page
		2.55
• • • • • • • • • • • • • • • • • • • •		3
PLANNING		
	1 11	
		. 7
		9
in Module Design		17
TNDTOES IN DESIGN F	PLANNING AND THETR	
11,010,010,111,000,111,11		
	. 777	
e Indices of Design		26
	ns in Computer Design Optimization of Computer Module Design	

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002201210020-1"

	A. M., Avtomatizatsiya Optimal'nogo Konstruirovaniya Elel'nykh Mashin, Moscow, "Sov. Radio," 1973, 152 pp	ktronnykh
** - 1		Page
2.2.	Requirements Set for Ferformance Indices and	
	Efficiency in Design Planning	30
2.3.		06
	Module Design Planning	36
	ENT OF AUTOMATED DESIGN-PLANNING SYSTEMS IN COMPUTER	
EMPLOYM OPTIMI: 3.1.	ZATION Comprehensive Systems of Planning Automation, and	
OPTIMI	Comprehensive Systems of Planning Automation, and the Peculiarities of Algorithms Allowing for the Requirements of Different Stages	59
3.1. 3.2.	Comprehensive Systems of Planning Automation, and the Peculiarities of Algorithms Allowing for the Requirements of Different Stages	59 69
3.1. 3.2.	Comprehensive Systems of Planning Automation, and the Peculiarities of Algorithms Allowing for the Requirements of Different Stages	• .

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002201210020-1"

PETYAN,	A. M., Avtomatizatsiya Optimal'nogo Konstruirovaniya Elek	ktronnykh
islitel'	nykh Mashin, Moscow, "Sov. Radio," 1973, 152 pp	N
3.4.	Allowance for Reliability-Thermal Indices in	Page
	Module Placement	81
4.1. 4.2.		92
4.3.	purpose Optimization of Modules	96
4.4.	and Second-Level Kodules	100
	Level Modules in Accordance with Thermal Index	114
	Level Module Placement	122
	JESIGN OF MODU 4.1. 4.2. 4.3.	3.4. Allowance for Reliability-Thermal Indices in Module Placement

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002201210020-1"

KARAPETYAN, A. M., Avi Vychislitel nykh Mashi	tomatizatsiya O in, Moscow, "So	ptimal'no v. Radio,	go Konstru " 1973, 15	irovaniya 1 2 pp	Elektronnykh
4.6. Methods f	for Solving Pro Dircuits and Wi	blems in	the Layout	of	Page
BIBLIOGRAPHY	and the same of th		* * * * * * * * * * * *	• • # • # • • • • •	• 136
SUBJECT-MATTER INDEX		•••••		• • • • • • • • • •	• 143
The state of the s			••••••	• • • • • • • • •	• 147
경기를 경기하고 있다. 즐거움 하는 것이 되었다.					
실진 경험 (1995년) 경영 설립 설문 경영 (1995년)				•	
5/5					

USSR

UDC 621.383.8

BUTSLOV, M. M., Doctor of Sciences, GORNOSTAYEV, V. A., KARAPETYAN, B. O., MARKOV, A. A., Doctor of Sciences, SMOLKIN, G. Ye., Doctor of Sciences, and SOFIYEV, G. N., Candidate of Sciences

"Electron-Optical Pulse Apparatus for Astronomical Investigations"

Leningrad, Optiko-Mekhanicheskaya Promyshlennost', No 10, Oct 72, pp 54-56

Abstract: A study is made of the problems to develop an installation for the investigation of astronomical objects with transitional radiation on the basis of pulsed cascade image converter tubes. This installation must be applicable for the solution of a large circle of astronomical problems requiring short-term exposures. The demands made to the principal parameters of a similar installation are indicated. The installation and the generator of frame scannings (GFS) and shutter pulses are described by reference to the flow chart and the functional diagram. The results of testing the GFS by making use of a PIM-3 type converter are presented in form of frequency-contrast characteristics. The latter give an idea of the contrast transfer in the whole range of frequencies. Four illustr., six biblio. refs.

1/1

18a_

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002201210020-1"

Molecular Physics

USSR

UDC 535.373.2

ANTIPENKO, K. M., DMITRYUK, A. V., ZUBKOVA, V. S., KARAFETYAN; G. O., and MAK, A. A., Institute of Precision Mechanics and Optics

"Cooperative Processes in Activated Glasses"

Moscow, Izvestiya Akademii Nauk SSSR, Seriya Fizicheskaya, Vol 37, No 3, 1973, pp 466-469

Abstract: Cooperative phenomena were found and studied in glasses activated with Yb-Tb, Yb-Eu. It is shown that there are at least two mechanisms for anti-Stokes excitation of the Tb³⁺ and Eu³⁺ ions: fast (cooperative sensitized luminescence) and slow (combinational excitation). Some quantitative parameters of the cooperative processes were determined. A study was made of the functional dependence of the efficiency of the cooperative processes on excitation power and energy, glass structure and composition, temperature, and activator concentration ratio. It is shown that disorder of the structure of the glasses does not prevent the occurrence in them of cumulative processes such as cooperative sensitiration and combinational excitation, the efficiency of the cumulative processes in the glasses being commensurable with the efficiency of two-photon absorption with the participation of the virtual level.

1/1

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002201210020-1"

JUSSR

VDC 535.376:666.265

GAVRILENKO, T. B., KARAPETYAN, G. O., KACHIBAYA, V. N.

"Cathodoluminescence of Terbium-Activated Glasses"

Minsk, Zhurnal Prikladnoy Spektroskonii (Journal of Applied Spectroscopy), Vol 15, No 4, Oct 71, pp 663-666

Abstract: Terbium-activated, multicomponent silicate and borate glasses are studied to compare their cathodoluminescence and photoluminescence spectra. Measurement of the temperature dependence of the emission line at 432 nm makes it possible to determine the temperature of the sample during excitation of cathodoluminescence.

Gathodoluminescence, light emission, photoluminescence, extinction times, and the temperature dependence of the spectra were measured. For high terbium concentrations intense lines appear at 542 and 549 nm; for low concentrations prominent lines are seen at 400 to 500 nm and 520 to 620 nm. The short wavelength group is brighter in photoluminescence than in cathodoluminescence, probably due to temperature quenching.

1/2

USSR.

GAVRILENKO, T. B. et al, Zhurnal Prikladnoy Spektroskopii, Vol 15, No 4, Oct 71, pp 663-666

Measurement of temperature dependence of photoluminescence in low concentration samples shows that the most intense short wavelength group is quenched almost completely at ~ 110°C. This permits indirect determination of sample temperature from the weakening of cathodoluminescence.

In both cathodo- and photoluminescence spectra the intensity of the short wavelength group decreases with increase in terbium concentration. Peak light emission is obtained with glass consisting of 20Li₂0·10Al₂0₃.50SiO₂·20BaO (mol⁶) and 10% by weight of Tb₂O₃. Higher concentrations of Tb₂O₃ decrease light output because of concentration extinction.

The authors thank V. V. Kuprevich for valuable discussions. Orig. art has 3 figs., 1 table, and 4 refs.

2/2

- 117 -

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002201210020-1"

USSR

KARAPETYAN G., O.; RAABEN, E. L.; NHUBOLEYEV, A. G.

"Optical Absorption Spectra of Hexavalent Chromium in Nitrate Glasses"
Minsk, Zhurnal Prikladnoy Spektreskopii; January, 1971; pp 82-5

ABSTRACT: The optical absorption spectra of hexavalent chromium in glasses with a content of 50 Mg(NO₃)₂•50 KiO₃ are studied. By means of experimental data the molar extinction coefficient ϵ and the oscillator strength f for the observed absorption band at 27300 cm⁻¹ are calculated. These are: $\epsilon = 16200$, $\epsilon = 0.774$. The absorption band for 27300 cm⁻¹, in accordance with the oscillator strength and the diagram of the Ballhausen and Liehr molecular orbitals for the tetrahedral complex ϵ 0. Mol. Spectroscopy,

1/2

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002201210020-1"

USSR

KARAPETYAN, G. O., et al, Zhurnal Prikladnoy Spektroskopii; January, 1971; pp 82-5

2, 342, 1958), is interpreted as corresponding to the orbital allowable transition $A_1 \rightarrow T_2$ with nonconnection $t_1(\pi)$ of the orbital with the antibonding orbital $e^*(\pi)$. It is shown that the degree of covalent bonding of the activator ligand in nitrate glasses is greater than in silicate glasses and that the π -bonds play a significant role in the complex $\operatorname{CrO}_{k}^{2-}$.

The article includes two equations, one table, and two figures. There are 12 references.

2/2

ַ בַּערוּ בַ

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002201210020-1"

ika kangang mengang mengang penggunan dan mengang mengang mengang penggunan penggunan penggunan kangang penggu Bangang menggunan penggunan penggunan penggunan penggunan penggunan penggunan penggunan penggunan penggunan pe USSR

UDC 621.396.677.833.3

BAKHRAKH, L. D., KARAPETYAN, K. Ye.

"On Calculation of Two-Reflector Antennas"

Izv. AN ArmSSR. Fizika (News of the Academy of Sciences, Armenian SSR. Physics), 1971, 6, No 1, pp 26-33 (from RZh-Radiotekhnika, No 7, Jul 71, Abstract No 7B68)

Translation: The authors consider problems of the applicability of the method of "beam treatment" (the concept of rays, Snellius' laws, the girder principle, etc.) to the investigation of fields. The function $f(\vec{E}_0\vec{H}_0,\Delta\psi)$ is introduced, which is zero when \vec{E}_0 , \vec{H}_0 satisfy the eikonal equation. A two-reflector parabolic antenna is considered. The small reflector of the antenna is calculated by the wave front method. This reflector must provide correction for diffraction fringe effects. A numerical example is presented for calculation of such a correcting reflector. A study is made of the field reflected from the small correcting reflector in a two-reflector antenna for applicability of beam treatment to the reflector. Three illustrations, two tables, bibliography of one title. Resumé.

1/1

- 8 -

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002201210020-1"

IJSSR

VDC 538.311.621. 396. 671.001.24

BAKHRAKH, L. D., and KARAPETYAN, K. YE., Armenian Division of Radiophysical Measurements, All-Union Scientific Research Institute of Physicotechnical and Radiotechnical Measurements

"Calculation of Two-Reflector Antennas"

Merevan, Izvestiya Akademii Nauk Armyanskoy SSR, Vol 6, No 1, 1971, pp 26-33

Abstract: The article considers questions of the applicability of the concept of geometrical optics (the concept of rays, Fermat's principle etc.) to elec-

tromagnetic fields. The functional $f(\vec{E_c}, \vec{H_c}, \nabla \psi)$ is introduced which, given $\vec{E_o}, \vec{H}$ satisfying the eikonal equation, is identically equal to zero.

A two-reflector parabolic antenna is considered in which the small reflector corrects for edge diffraction loss. A numerical example is given of the calculation of such a correcting reflector by the wave front method on a "Razdan 2" computer or by solving an ordinary differential equation of the first

1/2

USSR

BAKHRAKH, L. D., and KARAPETYAN, K. YE., Izvestiya Akademii Nauk Armyanskoy SSR, Vol 6, No 1, 1971, pp 26-33

order. It is shown that the ray interpretation is applicable to fields reflected by the small reflector and the method of wave fronts and differential equations is applicable to the calculation of reflectors which correct edge diffraction.

2/2

- 37 --

SECTION OF THE PROPERTY OF THE

Molecular Biology

USSR

UDC 547.963.3

GALOYAN, A. A., ZAKHARYAN, R. A., KARAPETYAN, L. A. and MANUKYAN, E. B., Institute of Biochemistry, Armenian SSR Academy of Sciences

"The Action of Dexamethazone (16-alpha-methyl-9-alpha-fluorprednisolone) on the Nucleotide Composition of the Nucleolus-Chromosome RNA of the Brain"

Yerevan, Doklady Akademii Nauk Armyanskoy SSR, Vol 56, No 5, 1973, pp 308-

Abstract: The changes in the nucleotide composition of the nucleoluschromosome RNA of whole rat brains under the influence of the prednisolone analogue dexamethazone were studied. The rats were decapitated four hours after dexametazone introduction and the brain RWA was obtained by thermal phenol fractionation. The phenol-water interface was used to obtain the total nucleolus-chromosome RNA. It was observed that the coefficient of specificity G+C/A+U was increased for the experimental animals, which is said to indicate a sharp lowering in the quantity of DNA-like RNA. These results are considered to show that dexamethazone inhibits DWA-like RWA synthesis, acting on the genome level to delay the synthesis of informational NNA responsible for the formation of a corticotropin-liberating harmone of a

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002201210020-1"

USSR

UDC 621.382.3

KARAPETYAN, L.M., KOROLEV, G.V.

"Computation Of Some Parameters Of A Transistor In A Microregime"

Tr. NII gidrometeorol. priboretr. (Works Of The Scientific-Research Institute Of Hydrology Instrument Manufacture), 1970, Issue 25, pp 92-96 (from RZh-Elektronika 1 yeye primeneniye, No 1, January 1970, Abstract No 18198)

Translation: In the paper a computation is performed for the differential resistance and diffusion capacitance of the emitter junction of a transistor in a microregime. Formulas for the above parameters are substantially simplified during notation with the aid of a coefficient depending on the emitter current. In the work, a formula for computation of this coefficient is developed and checked. 1 ill. 2 ref. Summary.

1/1

-- 87 --

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002201210020-1"

1/2 016 PROCESSING DATE--04DEC70

TITLE--FURAN OR ITS ALKYL OR CHLORO DERIVATIVES -U-

AUTHOR-(03)-KURGINYAN, K.A., KARAPETYAN, N.G., KARAPETYAN, R.G.

COUNTRY OF INFO--USSR

SOURCE--U.S.S.R. 265,119

REFERENCE--OTKRYTIYA., IZOBRET, PROM, OBRAZTSY, TOVARNYE ZNAKI, 1970 47

SUBJECT AREAS--CHEMISTRY

TOPIC TAGS--FURAN, ALKYL RADICAL, CHLORINATED ORGANIC COMPOUND, CHEMICAL PATENT, ORGANIC SYNTHESIS, CATALYST REGENERATION, OXIDATION, BUTADIENE

CONTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED FROXY REEL/FRAME--3007/0864

STEP NO--UR/0482/70/000/000/0000/0000

CIRC ACCESSION NO--AA0136298

UNCLASSIFIED

CHLO CATA WITH ENSU	ACTZEX DROANA ALYTIC I THE IRE CO	TRACT LOGS MIXT PH OF	(U) IS PRE • OF A THE C	ATALYT	ABSTR OXIDI SOLN. IC SOL	RACT. ZING OF CO	FUI A D J PR 1-0.	RAN O COLEF LME2P 5 AN	R III IN I OSIII O AT	IS A IE.G IVE	LKYL BU AND	OR TADI PO	ENE) CHLOF	TO	١
PLAC	E IN	THE PR	ESENC	ACIDI E OF A	TY OF IR.	THE (ATAL	YTIC	SOL	Ν.,	THE	REAC	CTION	2 AND TAKES	
		$z = \frac{n}{n} \left(\frac{n}{n} + \frac{1}{n} \right)$		•							1				
			•					j 1.							
								er" .							
				4											
											1				
y											•				
						4.15				:					
		1.1													
			i							: :	-				j
			!			:									
			•							1.					ı
				ļ						: :	. :				1
	1 .										•				
		-		í											
i de dist															
	ita et			UNCL	ASSIFI	ED	1 di								

Acc. Nr:

AP0046557

Ref. Code: UR 0216

PRIMARY SOURCE:

Izvestiya Akademii Nauk SSSR, Seriya Biologicheskaya, 1970, Nr 1, pp /27-/29

N. P. LVOV. V. I. LYUBIMOV. N. V. KARAPETYAN

PECULIARITIES OF THE OXIDATION METABOLISM AND NITROGEN FIXATION IN MYCOBACTERIUM AZOT — ABSORPTUM N. SP.

A. N. Back Institute of Biochemistry, Academy of Sciences, USSR

The experiments carried out on suspensions of non dividing cells have shown that the nitrogen-fixing Mycobacterium azot-absorptum oxidates the most important compounds of the tricarbon acids cycle and possesses a cytochromes set characteristic of aerobic microorganisms. However N₂ fixation in this microorganism proceeds more energetically under anaerobic or microaerophilic conditions.

1/1

REEL/FRAME 19781820

set 6

1/2 016

UNCLASSIFIED

PROCESSING DATE--040EC70

TITLE--FURAN OR ITS ALKYL OR CHLORO DERIVATIVES -U-

ginpinissi iidatamiditti ikitasi aksimalea

AUTHOR-(03)-KURGINYAN, K.A., KARAPETYAN, N.G., KARAPETYAN, R.G.

COUNTRY OF INFO--USSR

SOURCE--U.S.S.R. 265,119

REFERENCE--OTKRYTIYA., IZOBRET, PROM, OBRAZTSY, TOVARNYE ZNAKI, 1970 47 DATE PUBLISHED--09MAR 70

SUBJECT AREAS--CHEMISTRY

TOPIC TAGS--FURAN, ALKYL RADICAL, CHLORINATED ORGANIC COMPOUND, CHEMICAL PATENT, ORGANIC SYNTHESIS, CATALYST REGENERATION, DXIDATION, BUTADIENE

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3007/0864

STEP NO--UR/0482/70/000/000/0000/0000

CIRC ACCESSION NO--AA0136298

UNCLASSIFIED

The state of the s

UNCLASSIFIED

PROCESSING DATE--04DECTO
CIRC ACCESSION NO--AA0136298

ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT, FURAN OR ITS ALKYL OR
CHLORDANALOGS IS PREPO. BY OXIDIZING A DIDLEFIN (E.G. BUTADIENE) WITH A
CATALYTIC MIXT. OF AN AQ. SOLN. OF CU PRIMEZPOSITIVE AND PD CHLORIDE
WITH THE PH OF THE CATALYTIC SOLN. O.1-0.5 AND AT 60-110DEGREES. TD
ENSURE CONTINUITY OF THE PROCESS THROUGH REGENERATION OF CUCL SUB2 AND
REDN. OF THE INITIAL ACIDITY OF THE CATALYTIC SOLN., THE REACTION TAKES
PLACE IN THE PRESENCE OF AIR.

UNCLASSIFIED

âlment upo

USSR

UDC 591.513

KARAPETYAN, S. K., and ARSHAKYAN, A. V., Physiology Institute imeni L. A. Orbeli, Academy of Sciences Armenian SSR

"New Experimental Data on Residual Conditioned Reflexes in Domestic

Yerevan, Biologicheskiy Zhurnal Armenii, Vol 26, No 9, 1973, pp 64-69

Abstract: Studies were conducted on chickens to determine the effects of artificial day-night schemes on the formation of sequential confirst postnatal day was maintained in an environment in which two astronomical days were modified into three days (12 hours of "day" and chickens were raised under normal conditions. Another group of three Analysis of the results showed that the appearance of recidual conditioned food reflex in the experimental group was significantly delationed with a 10 sec interval between sequences the mode delay time was group exhibited a complete or partial loss of the conditioned reflex. In frequently, the experimental In the control birds the mean delay time was 8.58 ± 0.72, a statistically significant difference (p < 0.01).

- 7 -

HERETALES AND STATES AND DESIGNATION OF THE PROPERTY OF THE PR

Acc.	APOO41531 Abstracting Service: Ref. Code CHEMICAL ABST. 4/20	
	CHEMICAL ABST. 4/20	
	K 1110366	
	89985g Styrene derivatives. XV. Synthesis of 2-vinylbenzoic acid and its derivatives. Pogosyan, G. M.; Katalanta yan, T. G.; Matsoyan, S. G. (Inst. Org. Khim, Erryan, CSR). Zh. Org. Khim, 1970, 6(1), 139-41 (Russ). The condensation of PhCH ₂ CH ₂ OH with HCHO in the process.	
	densation of PhCR CM O 1970, 6(1), 139-41 (Russ). The con-	
	densation of PhCH ₂ CH ₂ OH with HCHO in the presence of HCl, followed by oxidin gives isochroman-1-one (P. Maitte, 1961) (I). Heating I with KOH powder at 175-80° gave \$\phi\$-H ₂ C:CH-	
		•
	CH.COV (V. OV.) (W.	
Mariana Mariana Mariana	C ₆ H ₄ COX (X = OK) (II), which was converted to II (X is OH). Std. reactions applied to II (X is OH or Cl) gave other II (X is OMe, OPh, NH ₂ , NHMe, NMe ₃ , or NHPh). CPJR	
	1 mil	
	7	
	$oldsymbol{arLambda}$	
	REEL/FRAME	
	19751399	
		۵.

USSR

VDC: 624.012:539.4

PINADZHYAN, V.V. and KARAPETYAN, V.A.

"Elastic and Ultimate Deformations of Light Concretes With Natural Aggregate at Short Duration Compression and Bending"

Yerevan, Nauch. Svobsheh. Arm. NII Stroit. Materialov i Sooruzh. (Scientific Reports of Armenian Research Institute on Construction Materials and Structures), 1972, vyp 29, pp 14-26 (from Referativnyy Zhurnal-Mekhanika, 1973, Abstract No 2V937 by the authors)

Translation: Results are presented of determination of ultimate deformations of light concretes, aged three to six months, containing lithoidal pumice, subject to compression and bending. Direct measurements established that relative ultimate deformations of centrally compressed prisms and of compressed zone of concrete in transversally reinforced beams are 160x10-5 with concrete mark 150 and 250x10-5 with mark 350-400. Stress-strain relations for compressed concretes are presented. Ductile failure of medium mark (M-150)

USSR

PINADZHYAN, V. V. and KARAPETYAN, V. A., Nauch. Syobsheh. Arm. NII Stroit. Materialov i Sooruzh., 1972, vyp 29, pp 14-26

concrete and brittle failure of relatively high mark (M-350) concrete are pointed out. Poisson ratio of light concrete underbending with stresses not exceeding one half of the ultimate is 0.5 for marks 150-400; in the state close to failure it is 0.25 for mark 150 concrete, 0.4 for mark 350 to 400. 5 references.

2/2

- 25 -

USSR

UDC 624.07

PINADZHYAN, V. V., KARAPETYAN, V. A., Armenian Scientific Research Institute of Building Materials and Structures

"On the Magnitude of the Initial Elasticity Modulus of Light Concretes"

Yerevan, Izvestiya Akademii nauk Armyanskoy SSR, Seriya tekhnicheskikh nauk, No. 4, 1971, pp 23-26

Abstract: Formulas used for obtaining the initial elasticity modulus for heavy and light concretes that are used in current standards for the design of concrete and reinforced concrete structures are discussed. The Graffe-Roche formula

 $E = 550,000 \text{ K}_1/1 + 270 \text{ K}_2/\text{R}$

is recommended for both heavy and light concretes. In the above formula R is the block strength of the concrete and K_1 and K_2 are correction coefficients. Tables are given for the values of the coefficients K_1 and K_2 of the basic types of light concrete with natural and artificial fillers. The initial

USSR

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002201210020-1"

MARTIERA DE DIRECTOR EN EL PERSONA DE L'ARRENT EN L'ARRENT EN L'ARRENT DE L'ARRENT MANTEUR DE L'ARRENT MANTEUR

PINADZHYAN, V. V., KARAPETYAN, V. A., Izvestiya Akademii nauk Armyanskoy SSR,

elastic modulus is also given as a function of the ground strength of the concrete in the form

$$E = 550,000 \cdot K_1/1 + 270 K_2/R_{gr}$$

where R_{gr} is the ground strength of the concrete and $K_2' = K_2 \cdot R_{gr}/R$.

029 TITLE--OPTICAL CONSTANTS, LUMINESCENCE, AND INDUCED RADIATION OF LANTHANUM AUTHOR-(05)-BAKHSHIYEVA, G.F., KARAPETYAN, V.YE., MOROZOV, A.M., MOROZOVA, COUNTRY OF INFO--USSR SOURCE--OPT. SPEKTROSK. 1970, 28(1), 76-81 DATE PUBLISHED ---- 70 ١ SUBJECT AREAS-MATERIALS TOPIC TAGS--SINGLE CRYSTAL, OPTIC PROPERTY, THERMAL EFFECT, LUMINESCENCE, ANISOTROPY, LANTHANUM COMPOUND, NIOBATE, CRYSTAL STRUCTURE CONTROL MARKING--NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1980/1315 STEP NO--UR/0051/70/028/001/0076/0081 CIRC ACCESSION NO--AP0049477 UNCLASSIFIED

2/2 029 UNCLASSIFIED CIRC ACCESSION NO--AP0049477 PROCESSING DATE--18SEP70 ABSTRACT/EXTRACT--(U) GP-0-ABSTRACT. LANGO SUB4 SINGLE CRYSTALS DIAM. 8-15. LENGTH 70 MM WERE ISOLATED FROM THE MELT AFTER HIGH TEMP. TREATMENT OF LANDO SUB4 IN INERT ATM. UNACTIVATED CRYSTALS AND CRYSTALS ACTIVATED WITH I MOLE PERCENT ND PRIMES POSITIVE WERE STUDIED. UNACTIVATED CRYSTALS ARE TRANSPARENT IN THE RANGE 0.27-6.5MU; THE LIGHT ABSORPTION IN THE RANGE 6.5-9.0 MU CORRESPONDS TO THE VIBRATIONAL FREQUENCIES OF NBO SUB4 TETRAHEDRONS. N WAS OBTAINED AT 5 WAVELENGTHS IN THE RANGE 435.8-656.3 MMU. STRONG BIREFRINGENCE WAS OBSD. ACTIVATION OF THE SINGLE CRYSTALS WITH NO PRIMES POSITIVE CAUSED STRONG ANISOTROPY OF THE CRYSTALS. LUMINESCENCE SPECTRA HERE RUN AT 77 DEGREESK. THE LUMINESCENCE DURATION WAS 120 MUSEC AT ROOM TEMP.; IT DID NOT CHANGE ON HEATING OF THE ACTIVATED SINGLE CRYSTAL TO 250DEGREES. THREE AXIAL ELLIPSOIDS WERE CONSTRUCTED FOR THE SEP. LINES IN THE LUMINESCENCE SPECTRA OF LANBO SUB4 MINUS NO PRIMES POSITIVE SCANNED IN POLARIZED LIGHT. GENERATION OF FORCED RADIATION OCCURRED IN THE ACTIVATED SINGLE CRYSTALS AT A SINGLE FREQUENCY, 1.0624 MU. 1.0622 MU OCCURRED ON HEATING OF THE CRYSTAL TO 300DEGREES.

UNCLASSIFIED .

1/2 029

PROCESSING DATE--18SEP70

UNCLASSIFIED TITLE--OPTICAL CONSTANTS, LUMINESCENCE, AND INDUCED RADIATION OF LANTHANUM

NIGBATE SINGLE CRYSTALS ACTIVATED BY NEODYMIUM -U-

AUTHOR-(05)-BAKHSHIYEVA, G.F., KAR<u>APETYAN: V.YE,</u>, MOROZOV, A.M., MOROZOVA,

EL.G., TOLSTOY, M.N. COUNTRY OF INFO--USSR

SOURCE--OPT. SPEKTROSK. 1970, 28(1), 76-81

DATE PUBLISHED ---- 70

SUBJECT AREAS -- MATERIALS

TOPIC TAGS--SINGLE CRYSTAL, OPTIC PROPERTY, THERMAL EFFECT, LUMINESCENCE, ANISOTROPY, LANTHANUM COMPOUND, NIOBATE, CRYSTAL STRUCTURE

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1980/1315

STEP NO--UR/0051/70/028/001/0076/0081

CIRC ACCESSION NO--APO049477

----UNCLASSIFIED

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002201210020-1"

PROCESSING DATE--18SEP70 UNCLASSIFIED CIRC ACCESSION NO--APG049477 ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. LANBO SUB4 SINGLE CRYSTALS DIAM. 8-15, LENGTH 70 MM WERE ISOLATED FROM THE MELT AFTER HIGH TEMP. TREATMENT OF LANDO SUB4 IN INERT ATM. UNACTIVATED CRYSTALS AND CRYSTALS ACTIVATED WITH 1 MOLE PERCENT NO PRIMES POSITIVE WERE STUDIED. UNACTIVATED CRYSTALS ARE TRANSPARENT IN THE RANGE 0.27-6.5MU; THE LIGHT ABSORPTION IN THE RANGE 6.5-9.0 MU CORRESPONDS TO THE VIBRATIONAL FREQUENCIES OF NBO SUB4 TETRAHEDRONS. N WAS OBTAINED AT 5 WAVELENGTHS IN THE RANGE 435.8-656.3 MMU. STRONG BIREFRINGENCE WAS OBSD. ACTIVATION OF THE SINGLE CRYSTALS WITH ND PRIMES POSITIVE CAUSED STRONG ANISOTROPY OF THE CRYSTALS. LUMINESCENCE SPECTRA WERE RUN AT THE LUMINESCENCE DURATION WAS 120 MUSEC AT ROOM TEMP.; IT DID NOT CHANGE ON HEATING OF THE ACTIVATED SINGLE CRYSTAL TO 250DEGREES. THREE AXIAL ELLIPSOIDS WERE CONSTRUCTED FOR THE SEP. LINES IN THE LUMINESCENCE SPECTRA OF LANBO SUB4 MINUS NO PRIMES POSITIVE SCANNED IN POLARIZED LIGHT. GENERATION OF FORCED RADIATION OCCURRED IN THE ACTIVATED SINGLE CRYSTALS AT A SINGLE FREQUENCY, 1.0624 MU. SHIFT TO 1.0622 HU OCCURRED ON HEATING OF THE CRYSTAL TO 300DEGREES.

UNCLASSIFIED

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002201210020-1"

1/2 010 UNCLASSIFIED PROCESSING DATE-300CT70
TITLE-REACTIONS OF DIETHYL ALKYLGLYCIDYLMALONATES WITH AMINES -U-

AUTHOR-(04)-MESROPYAN, E.G., KARAPETYAN, Z.T., AVETISYAN, D.V., DANGYAN,

COUNTRY OF INFO-USSR

SOURCE-ARM. KHIM. ZH. 1970, 23,1, 45-8

DATE PUBLISHED----70

SUBJECT AREAS-CHEMISTRY

TOPIC TAGS-ALKYL RADICAL, AMINE, ALIPHATIC ESTER

CONTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS—UNCLASSIFIED PROXY REEL/FRAME—1999/1940

STEP NO--UR/0426/70/023/001/0045/0048

CIRC ACCESSION NO-APO123721

UNCLASSIFIED

UNCLASSIFIED PROCESSING DATE--300CT70 010 2/2 CIRC ACCESSION NO--AP0123721 ABSTRACT/EXTRACT-(U) GP-0- ABSTRACT. THE TITLE ESTERS (I) WERE HEATED WITH 1 EQUIV. DIALKYLAMINE AND 0.25 EQUIV. H SUB2 0 4 HR AT 40DEGREES TO GIVE II (R. R PRIMEI, PERCENT YIELD, B SUBL. N 20 OVER D. AND M. P. PICRATE GIVEN) SHOWN ON HICROFICHE. FACILITY: EREVAN. GUS. UNIV., EREVAN, USSR. UNCLASSIFIED

Acc. Nr.: APO041006

USSR

WARAPETYAN. Zh. A.

"Determining the Stress State and Displacement Speeds in Electric Die-Casting Processes"

Moscow, Mashinovedeniye, No. 1, 70, pp 109-111

Abstract: The equipment for the electric die-costing of a strip is shown. It consists of an electrically heated strip fixed between an electrical contact and the die punch. As a result of the heating and the difference in speeds of the contact and the punch, the plastic deformation required for the process is consummated.

APQ041006. .

This article provides a solution to the problem in the framework of the theory of a plane, quasi-static flow of an incompressible, ideally rigid, isotropic plastic medium. The temperature field of the plastic area is assumed to be uniform and invariant with time. Solution of the problem is derived from the system of equations describing a medium of this kind, a system which has two families of mutually orthogonal characteristic curves. These characteristics have a simple mechanical significance: they are the same as the lines of sliding. The author concludes by noting that the solution to this problem can be applied to the die-casting of fine pipes with internal shaping or polishing.

1/2

19750748

USSR

UDC: 51:801

ARAPOV, M. V., KARAPET YANTS. A. M., MALINOVSKAYA, Z. M., PROBST, M. A.

"Some Problems in Deciphering K'itan Writing"

V sb. Issled. po mat. lingvist., mat. logike i inform. yazykam (Research on Mathematical Linguistics, Mathematical Logic and Information Languagescollection of works), Moscow, "Nauka", 1972, pp 79-95 (from R2h-Kibernetika, No 6, Jun 72, Abstract No 6V626)

Franslation: Some of the work on studying K'itan texts is presented specifically, finding and classifying morphemes of K'itan word forms. K'itan texts in digital transcription werved as the initial material.

The described work was made up of three main stages:

- 1. Division of blocks into fixed (the stem and possibly some word--forming suffixes) and variable (affixes) parts, establishing identities between a number of symbols, finding stable symbol combinations, and classification of post-fixal morphemes on the basis of their co-occurrence range.
- 2. Carrying out a formal procedure for dividing the variable parts into classes based on the division of blocks into variable and fixed parts, using the material of the first stage.

1/2

- 79 -

USSR

ARAPOV, M. V. et al., <u>Issled.</u> po mat. lingvist., mat. logike i inform. yazykam, Moscow, "Nauka", 1972, pp 79-95

3. Classification of the variable and fixed parts of blocks in accordance with membership in a nominal or verbal paradigm on the basis of materials of the first stage, utilization of "parallel" passages in the texts, and by comparison with the Mongolian language. In this stage another division of blocks is used (based on the first, but differently constructed). Nearly all stages of the work, particularly the first, were characterized by iterative processes: new governing principles were used to refine those previously found. From the introduction.

2/2

USSR

UDC 621.316.(001.1+003.13)

ASTAKHOV, YU. N., GORDIYEVSKIY, I. G., KARASEV, D. D.

"Economical Proportionality in the Electric Power Supply Systems of Municipal Rayons"

V sb. Tekhn. progress v elektrosnabzh. gorodov (Technical Frogress in Electric Power Supply of the Cities -- collection of works), Leningrad, Energiya Press, 1970, pp 184-186 (from RZh-Elektrotekhnika i Energetika, No 4, Apr 71, Abstract No 4 Ye 273)

Translation: The economically expedient relations between expenditures on individual elements corresponding to the minimum calculated expenditures for the electric power supply systems of a new municipal rayon are defined. The relations obtained are recommended for estimating the economy of plans developed for electric power supply system construction and design. The bibliography has 7 entries. [Moscow Power Engineering Institute]

1/1

126 -

USSR

UDC 621.762.001:669.27

TRET YAKOV, V. I., PIVOVAROV, L. Kh., NOVIKOVA, M. B., IJDER, V. Ya., NOVIKOVA, T. A., VRZHESHCH, Ye. Ya., and KARASEV, G. E.

STANDARD BEGGE THE PART OF THE

"Influence of Surface Layer on Plates of Titanium-Tungsten Hard Alloys on Wear Resistance During Cutting"

Sb. tr. Vses. n.-i. i proyektn. in-t tugoplavk. met. i tverd. splavov [Collected Works of All-Union Scientific Research and Planning Institute for Refractory Metals and Hard Alloys], No. 10, 1970, pp. 55-60 (Translated from Referativnyy Zhurnal-Metallurgiya, No. 2, 1971, Abstract No. 2 G413 by the authors)

Translation: Results are described from determination of the resistance factor to cutting of specimens of titanium-tungsten hard alloys, when layers of altered composition and structure are formed on the cutting edges with certain sintering modes. It is established that the presence of surface layers on the cutting edges of the cutting plates increases their wear resistance during cutting by an average of 1.6 times. 2 figures; 2 tables; 3 biblio. refs.

1/1

. 23 ...

1/2 025

UNCLASSIFIED

PROCESSING DATE--0200170

TITLE-THERMODYNAMIC PROPERTIES OF MIXED SOLUTIONS OF ELECTROLYTES. VII.

VINELUENCE OF THE NATURE OF ION HYDRATION ON THE SIGN OF THE HEAT DE

AUTHOR-(03)-KARAPETYANTS, M.KH., VLASENKO, K.K., SOLOVYEVA, S.G.

COUNTRY OF INFO--USSR

SCURCE--ZH. FIZ. KHIM. 1970. 44(2) 541

DATE PUBLISHED----70

SUBJECT AREAS--CHEMISTRY

TOPIC TAGS--THERMODYNAMIC PROPERTY, ELECTROLYTIC SOLUTION, AQUEOUS SOLUTION, SILVER NITRATE, SODIUM NITRATE, POTASSIUM NITRATE, ENDOTHERMIC EFFECT, EXOTHERMIC EFFECT

CONTROL MARKING--NO RESTRICTIONS

PROXY REEL/FRAME--1989/0469

STEP NO--UR/0076/70/044/002/0541/0541

GIRC ACCESSION NO--APO107075

UNCLASSIFIED

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002201210020-1"

UNCLASSIFIED PROCESSING DATE--020CT70 CIRC ACCESSION NO-APO107075

ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. THE HEAT OF MIXING DELTS H SUBM WAS DETD. FOR THE SYSTEMS AQ. AGNO SUB3 PLUS AQ. NAND SUB3 (SYSTEM 1) AND AC. AGNO SUB3 PLUS AQ. KNO SUB3 (SYSTEM 2), AT ISOMOLAR CONDITIONS AND 25DEGREES. SYSTEM (1) WAS EXOTHERMIC (DELTA H SUBM EQUALS NEGATIVE 11 AND NEGATIVE 27 KCAL-MOLE FOR THE CONCNS. 1.0 AND 3.5 M, RESP.), WHILE SYSTEM (2) WAS ENDOTHERMIC (DELTA H SUBM EQUALS 9 AND 20 KCAL-MOLE, RESP., FOR THE ABOVE CONCNS.). THE DATA INDICATE THAT THE AG PRIME POSITIVE ION EXHIBITS A STRUCTURIZING EFFECT ON THE SOLUTE IN CONCO. SOLNS.

UNCLASSIFIED

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002201210020-1"

1/2 021

UNCLASSIFIED

PROCESSING DATE--13NOV70

TITLE-TEMPERATURE DEPENDENCE OF THE VAPOR PRESSURE OF

TRISDIETHYLAMINOCHLOROGERMANE AND TRIETHYLDIETHYLAMINOGERMANE -U-AUTHOR-1031-GONCHAROY; A.K., KARAPETYANISHMAKH,, KOLYAKOYA, G.M.

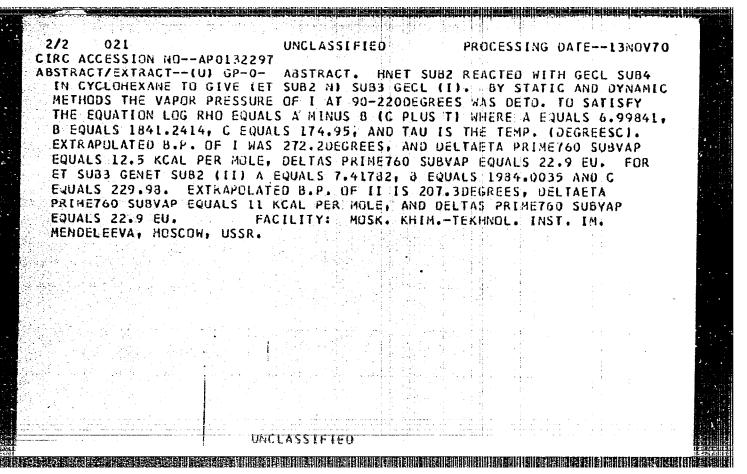
COUNTRY OF INFO--USSR

SOURCE--ZH. FIZ. KHIM. 1970, 44131, 832

DATE PUBLISHED ---- 70

SUBJECT AREAS--CHEMISTRY

TOPIC TAGS--VAPOR PRESSURE, ENTROPY, CYCLOHEXANE, THERMAL EFFECT, MATHEMATIC EXPRESSION, AMINE DERIVATIVE, CHLORINATED ORGANIC COMPOUND, ORGANIC MATHEMATIC EXPRESSION.


CONTROL MARKING--NO RESTRICTIONS

OCCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3004/2040

STEP NO--UR/0076/70/044/003/0832/0832

CIRC ACCESSION NO--APO132297

UNCLASSIFIED

USSR

KARAPETYANIS N. K.; SANKO, S. G. (Rostov-on-Don State University)

"Singular Integral Operators on a Line with a Fractional Linear Shift and the Noether Theory of Operators with Involution"

Yerevan, Izvestiya Akademii Nauk Armyanskoy SSR: Matematika; January-February, 1972; pp 68-77

Abstract: A general scheme of investigation of the operators A + QB with involution $O(Q^2 = I)$ in Banach spaces is proposed and applied to the singular integral operator $(K\varphi)(x) = a(x) \varphi(x) + b(x) \varphi[\pi(x)] + c(x)(S\varphi)(x) + d(x)(S\varphi)[a(x)]$.

where $(S_{\overline{x}})(x) = \frac{1}{\pi i} \int_{-\pi}^{\pi} f(t)(t-x)^{-1} dt$ and a(x) is a fractional linear shift of the

Carleman type: a[x(x)] = x. The weight L_p -space is found in which the Noether theory is valid for operator K. The condition for operator K to be Noetherian as well as the formula for the index are found.

The article includes 17 equations. There are 9 bibliographic references.

1/1

1/2 014 UNCLASSIFIED PROCESSING DATE--230CT70
TITLE--EVALUATING THE PLASTIC PROPERTEIS OF NAIRIT -U-

AUTHOR-(03)-KARAS, L.YA., KINDER, A.V., SAVELYEVA, L.I.

COUNTRY OF INFO--USSR

SOURCE--KAUCH. REZINA 1970, 29(2), 15-17

DATE PUBLISHED----70

SUBJECT AREAS--MATERIALS, MECH., IND., CIVIL AND MARINE ENGR

TOPIC TAGS--CHLOROPRENE, PLASTICITY, RUBBER WORKING MACHINERY, SYNTHETIC RUBBER/(U)NAIRIT SYNTHETIC RUBBER

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1997/0459

STEP NO--UR/0138/70/029/002/0015/0017

CIRC ACCESSION NO--APO119395

UNCLASSIFIED

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002201210020-1"

UNCLASSIFIED

PROCESSING DATE--230CT70

ABSTRACT-EXTRACT--(U) GP-0- ABSTRACT. A METHOD WAS DEVELOPED FOR DETG.
THE MILLING CONDITIONS OF NAIRIT (I) FROM LAB. TESTS BY USING I DE
INITIAL PLASTICITY (P SUBO) AND FINAL PLASTICITY (P SUB2) AFTER MILLING
MEANS TO DET. THE EMPIRICIAL MILLING CONSTS. FOR 26 AND 60 IN. MILLS.

THE EXPTL. DATA AGREED WITH THE CALCD. RESULTS. FACILITY:

SVERDLOVSK. FILIAL NAUCH.-ISSLED. INST. REZIN PROM., SVERDLOVSK, USSR.

UNCLASSIFIED 1/2 024 PROCESSING DATE--230CT70 TITLE--ELECTRICAL AND OPTICAL PROPERTIES OF ALLOYS OF THE (CUINTE SUB2) SUB3(INEGATIVEX)-(IN SUB2 TE SUB3) SUB2X AND (CUGATE SUB2) AUTHOR-(05)-KOSHKIN, V.M., NESTEROVA, T.N., GALCHINETSKIY, L.P.,

SKLOVSKAYA, I.L., KARAS, V.R. COUNTRY OF INFO--USSR

SOURCE--UKR. FIZ. ZH. (RUSS. ED.) 1970, 15(2), 210-16

DATE PUBLISHED ---- 70

SUBJECT AREAS--MATERIALS, PHYSICS

TOPIC TAGS--OPTIC PROPERTY, TELLURIDE, INDIUM COMPOUND, ELECTRIC PROPERTY, SEMICONDUCTOR ALLOY, SEMICONDUCTOR MATERIAL, GALLIUM COMPOUND

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY KEEL/FRAME--1996/1938

STEP NO--UR/0185/70/015/002/0210/0216

CIRC ACCESSION NO--APOL18900

UNCLASSIFIED

2/2 024 UNCLASSIFIED PRUCESSING DATE--230CT70 CIRC ACCESSION NO--APO118900 ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. ELEC. COND. SIGMA, MOBILITIES MU, CONCN. OF THE MAIN CARRIERS N, AND THE OPTICAL ENERGY GAP (E SUBQ) OF SEMICONDUCTING ALLOYS OF THE (CUINTE SUB2) SUB3(INEGATIVEX) -(IN SUB2 TE SUB3)SUB2X AND (CUGATE SUB2)SUB3(INEGATIVEX) -(GA SUB2 TE SUB3) SUB2X SYSTEMS WERE INVESTIGATED. VALUES FOR BAND BAND TRANSISTIONS ENERGY WERE DETD. THE METHOD CONSISTS OF BUILDING THE DIFFERENTIAL CURVES DX-D EPSILON (EPSILON) AND D(1-K)-D EPSILON (EPSILON), WHERE K IS THE ABSORPTION COEFF. AND, EPSILON IS THE PHOTON ENERGY. APPLICATION OF THIS METHOD PERMITS SPLITTING THE VALENCE BAND IN THE ALLOYS WITH THE CHALCOPYRITE LATTICE TO BE FOUND. ALL TRANSITIONS ARE CONSIDERED DIRECT AND ALLOWED. PERCULARITIES IN THE CURVES E SUBO (X) ARE CONNECTED WITH THE CHANGE IN THE CRYSTAL STRUCTURE FROM CHALCOPYRITE TO SPHALERITE. THE DEPENDENCE OF N. SIGMA, E SUBO IN THE ABOVE SYSTEMS SHOWS THEIR DEVIATION FROM THE PSEUDOBINARITY. THIS INCREASES N AND SIGNA IN THE ALLOYS WITH SMALL VALUES OF X COMPARED TO THAT N AND SIGHA IN THE ALLOYS WITH X EQUALS O. THE RISE OF N CAUSES DEGENERATION OF THE FREE CARRIER GAS AND RESULTS IN THE BURSTAINE EFFECT. FACILITY: VNII MONOKRIST., KHARKOV, USSR.

UNCLASSIFIED

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002201210020-1"